首页新闻·活动论坛CAE咨询服务CAE培训联盟CAE软件库技术中心人才·工作奖品
 
产品频道>CAE>MSC ADAMS
总体介绍  产品图片  功能模块  应用案例  手册下载 网摘  用户点评  资料 帖子  索要资料  索要报价  申请试用  申请培训  纠错
 发布文章,奖励点数
 模块功能列表
adams仿真语言
adams/vibration
MSC.ADAMS v2005新增功能介绍
MSC.ADAMS--功能化虚拟样机软件
完成现实和精确建模的预/处理
MD Adams 应用
MD Adams/Car产品优势
 adams/vibration
发布者: 出处: 日期:2014/4/4 阅读:2102 推荐:0 点评:0
   

 

第4章                  ADAMS软件基本算法

本章主要介绍ADAMS软件的基本算法,包括ADAMS建模中的一些基本概念、运动学分析算法、动力学分析算法、静力学分析及线性化分析算法以及ADAMS软件积分器介绍。通过本章的学习可以对ADAMS软件的基本算法有较深入的了解,为今后合理选择积分器进行仿真分析提供理论基础,为更好地使用ADAMS打下良好的理论基础。

4.1 ADAMS建模基础

ADAMS利用带拉格朗日乘子的第一类拉格朗日方程导出――最大数量坐标的微分-代数方程(DAE)。它选取系统内每个刚体质心在惯性参考系中的三个直角坐标和确定刚体方位的三个欧拉角作为笛卡尔广义坐标,用带乘子的拉格朗日第一类方程处理具有多余坐标的完整约束系统或非完整约束系统,导出以笛卡尔广义坐标为变量的动力学方程。

4.1.1 参考标架

在计算系统中构件的速度和加速度时,需要指定参考标架,作为该构件速度和加速度的参考坐标系。在机械系统的运动分析过程中,有两种类型的参考标架——地面参考标架和构件参考标架。地面参考标架是一个惯性参考系,它固定在一个“绝对静止”的空间中。通过地面参考标架建立机械系统的“绝对静止”参考体系,属于地面标架上的任何一点的速度和加速度均为零。对于大多数问题,可以将地球近似为惯性参考标架,虽然地球是绕着太阳旋转而且地球还有自转。对于每一个刚性体都有一个与之固定的参考标架,称为构件参考标架,刚性体上的各点相对于该构件参考标架是静止的。

4.1.2 坐标系的选择

机械系统的坐标系广泛采用直角坐标系,常用的笛卡尔坐标系就是一个采用右手规则的直角坐标系。运动学和动力学的所有矢量均可以用沿3个单位坐标矢量的分量来表示。坐标系可以固定在一个参考标架上,也可以相对于参考框架而运动。合理地设置坐标系可以简化机械系统的运动分析。在机械系统运动分析过程中,经常使用3种坐标系:

1)地面坐标系(Ground Coordinate System)。地面坐标系又称为静坐标系,是固定在地面标架上的坐标系。ADAMS中,所有构件的位置、方向和速度都用地面坐标系表示。

2)局部构件参考坐标系(Local Part Reference FrameLPRF)。这个坐标系固定在构件上并随构件运动。每个构件都有一个局部构件参考坐标系,可以通过确定局部构件参考坐标系在地面坐标系的位置和方向,来确定一个构件的位置和方向。在ADAMS中,局部构件参考坐标系缺省与地面坐标系重合。

3)标架坐标系(Marker System)。标架坐标系又称为标架,是为了简化建模和分析在构件上设立的辅助坐标系,有两种类型的标架坐标系:固定标架和浮动标架。固定标架固定在构件上,并随构件运动。可以通过固定标架在局部构件参考坐标系中的位置和方向,确定固定标架坐标系的位置和方向。固定标架可以用来定义构件的形状、质心位置、作用力和反作用力的作用点、构件之间的连接位置等。浮动标记相对于构件运动,在机械系统的运动分析过程中,有些力和约束需要使用浮动标架来定位。

动力学方程的求解速度很大程度上取决于广义坐标的选择。研究刚体在惯性空间中的一般运动时,可以用它的质心标架坐标系确定位置,用质心标架坐标相对地面坐标系的方向余弦矩阵确定方位。为了解析地描述方位,必须规定一组转动广义坐标表示方向余弦矩阵。第一种方法是用方向余弦矩阵本身的元素作为转动广义坐标,但是变量太多,同时还要附加六个约束方程;第二种方法是用欧拉角或卡尔登角作为转动坐标,它的算法规范,缺点是在逆问题中存在奇点,在奇点位置附近数值计算容易出现困难;第三种方法是用欧拉参数作为转动广义坐标,它的变量不太多,由方向余弦计算欧拉角时不存在奇点。ADAMS软件用刚体 的质心笛卡尔坐标和反映刚体方位的欧拉角作为广义坐标,即。由于采用了不独立的广义坐标,系统动力学方程虽然是最大数量,但却是高度稀疏耦合的微分代数方程,适用于稀疏矩阵的方法高效求解。

42 ADAMS运动学分析

4.2.1 ADAMS运动学方程

利用ADAMS建立机械系统仿真模型时,系统中构件与地面或构件与构件之间存在运动副的联接,这些运动副可以用系统广义坐标表示为代数方程,这里仅考虑完整约束。设表示运动副的约束方程数为,则用系统广义坐标矢量表示的运动学约束方程组为:

                                 4.2--1

考虑运动学分析,为使系统具有确定运动,要使系统实际自由度为零,为系统施加等于自由度()的驱动约束:

……………………………………………………                                                      (4.2--2)

在一般情况下,驱动约束是系统广义坐标和时间的函数。驱动约束在其集合内部及其与运动学约束合集中必须是独立和相容的,在这种条件下,驱动系统运动学上是确定的,将作确定运动。

由式(4.2-1)表示的系统运动学约束和式(4.2-2)表示的驱动约束组合成系统所受的全部约束:

…………………………….………...                                            (4.2-3)

式(4.2-3)为nc个广义坐标的nc个非线性方程组,其构成了系统位置方程。

对式(4.2-3)求导,得到速度约束方程

………………………….…                                 (4.2-4)

若令,则速度方程为:

………...………………………..…                                       (4.2-5)

对式(2.24-4)求导,可得加速度方程:

    (4.2-6)

若令,则加速度方程为:

…………………………                               (4.2-7)

矩阵,为雅可比矩阵,如果的维数为mq维数为n,那么维数为矩阵,其定义为。在这里nh个运动学约束,ncnh个驱动约束,nc个广义坐标)的方阵。

4.2.2 ADAMS运动学方程的求解算法

ADAMS仿真软件中,运动学分析研究零自由度系统的位置、速度、加速度和约束反力,因此只需求解系统的约束方程:

                                                      (4.2-8)

运动过程中任一时刻位置的确定,可由约束方程的Newton-Raphson迭代法求得:

                                            (4.2-9)

其中,,表示第次迭代。

时刻速度、加速度可以利用线性代数方程的数值方法求解,ADAMS中提供了两种线性代数方程求解方法:CALAHAN方法(由Michigan 大学 Donald Calahan 教授提出)与HARWELL方法(由HARWELL Ian Duff 教授提出 ),CALAHAN方法不能处理冗余约束问题,HARWELL方法可以处理冗余约束问题,CALAHAN方法速度较快。

                                                      (4.2--10)

                                 (4.2-11)

43 ADAMS动力学分析

4.3.1 ADAMS动力学方程

ADAMS中用刚体B的质心笛卡尔坐标和反映刚体方位的欧拉角作为广义坐标,即,令。构件质心参考坐标系与地面坐标系间的坐标变换矩阵为:

4.3-12

定义一个欧拉转轴坐标系,该坐标系的三个单位矢量分别为上面三个欧拉转动的轴,因而三个轴并不相互垂直。该坐标系到构件质心坐标系的坐标变换矩阵为:

                                    4.3-132

构件的角速度可以表达为:

                                                             4.3-3-14

ADAMS中引入变量为角速度在欧拉转轴坐标系分量:

                                                         4.3-4-15

考虑约束方程则系统的动力学方程ADAMS利用带拉格朗日乘子的拉格朗日第一类方程的能量形式得到如下方程:

                                   (4.3--165)

T为系统广义坐标表达的动能,为广义坐标,为在广义坐标方向的广义力,最后一项涉及约束方程和拉格朗日乘子表达了在在广义坐标方向的约束反力。

ADAMS中近一步引入广义动量:

                                                     (4.3-6-17)

简化表达约束反力为:

                                                   4.3-7-18

这样方程(4.3-5)-16可以简化为:

                                               (4.3-8-19)

动能可以近一步表达为:

                                        (4.3--209)

其中M为构件的质量阵,J为构件在质心坐标系下的惯量阵。

(4.3-819)分别表达为移动方向与转动方向有:

                                                (4.3-10-21)

                                                (4.3-11-22)

其中

(4.3-10-21)式可以简化为:

                                                   (4.3-12-23)

,由于中包含欧拉角,为了简化推导,ADAMS中并没有进一步推导,而是将其作一个变量求解。

这样ADAMS中每个构件具有如下15个变量(而非12个)和15个方程(而非12个)。

变量:

                                            (4.3-12-24)

 

方程:

                                            (4.3-13-25)

 

集成约束方程ADAMS可自动建立系统的动力学方程――微分-代数方程:

                                  (4.3-1426)

 

其中,P为系统的广义动量;H为外力的坐标转换矩阵。

为了更好地说明ADAMS的建模过程下面以一个单摆为例进行建模推导。

4-1单摆示意图

如图所示,单摆的质量为M、惯量为I,杆长为2L,并在O点以转动副与大地相连接约束在大地的OXY平面内。在单摆质心处建立单摆的跟随坐标系――局部构件参考坐标系OpXpYp,其坐标在地面坐标系OXY中为(xy),单摆的姿态角为θ

系统的动能表达式:

                                     4-27

广义动量表达式:

                                                  4-28

外力表达式:

                                               4-29

约束方程:

                                             4-30

约束方程的雅克比矩阵:

                                      4-31

约束对应的拉格朗日乘子:

                                                   4-32

力、力矩平衡方程:

  4-33

动量矩表达式:

                                      4-34

运动学关系方程:

                                       4-35

其方程集成表达为:

                               4-36

其中系统需求解变量为:

                      4-37

 

4.3.2 初始条件分析

在进行动力学、静力学分析之前,ADAMS会自动进行初始条件分析,以便在初始系统模型中各物体的坐标与各种运动学约束之间达成协调,这样可以保证系统满足所有的约束条件。

初始条件分析通过求解相应的位置、速度、加速度的目标函数的最小值得到。

(1)1对初始位置分析,需满足约束最小化问题

Minimize

Subject to  

 

q 为构件广义坐标,W为权重矩阵,q0为用户输入的值,如果用户输入的值为精确值,则相应权重较大,并在迭代中变化较小。可以利用拉格朗日乘子将上述约束最小化问题变为如下极值问题:

                              (4.3-15-38)

 

取最小值,则由得:

                                   (4.3-15-39)

因约束函数中存在广义坐标,该方程为非线性方程须用Newton-Raphson迭代求解,迭代方程如下:

                (4.3-16-40)

2)对初始速度分析,需满足约束最小化问题

Minimize

Subject to  

其中,为用户设定的准确的或近似的初始速度值,或者为程序设定的缺省速度值;

        为对应加权权重系数矩阵

同样可以利用拉格朗日乘子将上述约束最小化问题变为如下极值问题:

                  (4.3-17-41)

取最小值,得:

                                   (4.3-18-42)

q为已知该方程为线性方程组可求解如下方程:

                                (4.3-19-43)

3)对初始加速度、初始拉氏乘子的分析,可直接由系统动力学方程和系统约束方程的两阶导数确定。

4.3.3 ADAMS动力学方程的求解

对于式(4-26)(4.3-14)微分-代数方程的求解,ADAMS采用两种方式求解,第一种为对DAE方程的直接求解,第二种为DAE方程利用约束方程将广义坐标分解为独立坐标和非独立坐标然后化简为ODE方程求解。关于具体求解器将在4.5节介绍。DAE方程的直接求解将二阶微分方程降阶为一阶微分方程来求解,通过引入,将所有拉格朗日方程均写成一阶微分形式,该方程为 Index 3微分代数方程。

I3积分格式

                                    (4.3-20-44)

运用一阶向后差分公式,上述方程组对求导,可得其Jacobian矩阵,

然后利用 Newton-Rapson 求解。可以看出,当积分步长减小并趋近于0时,上述Jacobian矩阵呈现病态。为了有效地监测速度积分的误差,可采用降阶积分方法(Index reduction methods)。通常来说,微分方程的阶数越少,其数值求解稳定性就越好。ADAMS还采用两种方法来降阶求解,即SI2(Stabilized-Index Two)SI1(Stabilized-Index One)方法。

SI2积分格式

                                       (4.3-2245)

上式能同时满足求解不违约,且当步长趋近于0时,Jacobian矩阵不会呈现病态现象。

SI1积分格式

                                           (4.3-2346)

 

上式中,为了对方程组降阶,引入来替代拉格朗日乘子,即。这种变化有效地将上述方程组的阶数降为1。因为只需要微分速度约束方程一次来显示地计算表达式。运用SI1积分器,能够方便地监测的积分误差,系统的加速度也趋向于更加精确。但在处理有明显的摩擦接触问题时,SI1积分器十分敏感并具有挑剔性。

44 ADAMS静力学及线性化分析

 

4.4.1 静力学分析

在进行静力学、准静力学分析时,对动力学方程的速度、加速度设置为零,则得到静力学方程如下:

                                   4 .41-47

该方程为非线性代数方程利用Newton-Rapson 迭代求解求解。

 

4.4.2 线性化分析

在系统的某点处, 可对系统的动力学方程进行线性化,

                              4 .42-48

MCK为常数阵

可对(4 .41)式求解得到系统的频率和振动模态。

45 ADAMS求解器算法介绍

4.5.1 ADAMS数值算法简介

运动学、静力学分析需求解一系列的非线性代数方程、线性代数方程,ADAMS采用了修正的Newton-Raphson迭代算法求解非线性代数方程,以及基于LU分解的CALAHAN方法和HARWELL方法求解线性代数方程。对动力学微分方程,根据机械系统特性,选择不同的积分算法;对刚性系统,采用变系数的BDF(Backwards Differentiation Formulation)刚性积分程序,它是自动变阶、变步长的预估校正法(PECEPredict-Evaluate-Correct-Evaluate),并分别为Index3SI2SI1积分格式,在积分的每一步采用了修正的Newton-Raphson迭代算法;对高频系统(High-Frequencies),采用坐标分块法(Coordinate-Partitioned Equation)将微分-代数(DAE)方程简化为常微分(ODE)方程分别利用ABAMAdams-Bashforth-Adams-Moulton)方法和龙格-库塔(RKF45)方法求解。

ADAMS中具体如下:

线性求解器(求解线性方程),采用稀疏矩阵技术以提高效率。

 CALAHAN求解器与HARWELL求解器

非线性求解器(求解代数方程),采用了Newton-Raphson迭代算法。

DAE求解器(求解微分-代数方程),采用BDF刚性积分法。

SI2GSTIFFWSTIFFCONSTANT_BDF

SI1: GSTIFFWSTIFFCONSTANT_BDF

I3GSTIFFWSTIFF DstiffCONSTANT_BDF

● ODE求解器(求解非刚性常微分方程)

ABAM求解器与RKF45求解器

4.5.2 动力学求解算法介绍

 

4.5.2.11微分-代数(DAE方程的求解算法过程

 

ADAMSDAE方程的求解采用了BDF刚性积分法,以下为其步骤:

1)预估阶段

Gear预估-校正算法可以有效地求解微分-代数方程。首先,根据当前时刻的系统状态矢量值,用泰勒级数预估下一时刻系统的状态矢量值:

                                4.51-49

其中,时间步长。这种预估算法得到的新时刻的系统状态矢量值通常不准确,可以由Gear阶积分求解程序(或其他向后差分积分程序)来校正。

                                      4.52-50

其中,时的近似值;

      Gear积分程序的系数值。

上式经过整理,可表示为:              4.53-51

2)校正阶段

求解系统方程,如,则方程成立,此时的为方程的解,否则继续;

求解Newton-Raphson线性方程,得到,以更新,使系统方程更接近于成立。

   ,其中为系统的雅可比矩阵。

利用Newton-Raphson迭代,更新

重复以上步骤直到足够小。

3)误差控制阶段

预估计积分误差并与误差精度比较,如积分误差过大则舍弃此步。

计算优化的步长和阶数

如达到仿真结束时间,则停止,否则,重新进入第一步。

 

4.5.2.23 坐标缩减的微分方程求解过程算法

 

ADAMS程序提供ABAM(AdamsBashforth and Adams-Moulton)RKF45积分程序,采用坐标分离算法,将微分-代数方程减缩成用独立广义坐标表示的纯微分方程,然后用ABAM RKF45程序进行数值积分。以下以ABAM为例介绍其求解过程。

坐标减缩微分方程的确定及其数值积分过程按以下步骤进行:

1)坐标分离

  将系统的约束方程进行矩阵的满秩分解,可将系统的广义坐标列阵分解成独立坐标列阵和非独立坐标列阵,即

2)预估 

Adams-Bashforth显式公式,根据独立坐标前几个时间步长的值,预估时刻的独立坐标值表示预估值。

3)校正

  Adams-Moulton隐式公式对上面的预估值,根据给定的收敛误差限进行校正,以得到独立坐标的校正值表示校正值。

4)确定相关坐标 

确定独立坐标的校正值之后,可由相应公式计算出非独立坐标和其他系统状态变量值。

5)积分误差控制 

与上面预估-校正算法积分误差控制过程相同,如果预估值与校正值的差值小于给定的积分误差限,接受该解,进行下一时刻的求解。否则减小积分步长,重复第二步开始的预估步骤。

 

4.5.3 动力学求解算法特性比较

 

4.5.3.11微分-代数(DAE)方程的求解三种积分格式比较

 

I3积分格式仅监控位移和其它微分方程的状态变量的误差。当积分步长变小时Jacobian矩阵不能保持稳定,会出现奇异,积分易发散。积分过程不能监控速度和约束反力。因而速度、加速度、约束反力计算精度差一些。

SI2积分格式中考虑了速度约束方程,可以控制拉氏乘子的误差、速度误差,仿真结果更精确,可以给出速度、加速度较为精确解。Jacobian矩阵在步长很小时仍能保持稳定,Jacobian矩阵小步长不会奇异、病态,增加了校正器在小步长时的稳定性和鲁棒性。校正阶段不会象I3积分格式那样容易失败。可以精确处理高频问题。但比I3积分格式慢,驱动约束为速度时,输入必须可微、光滑。非光滑驱动约束运动输入会产生无限加速度,而导致SI2积分失败。位移驱动约束输入不能是变量的函数,速度、加速度输入可以是变量的函数,而I3驱动约束输入可以是变量的函数,这给仿真带来不便。

SI1积分格式中考虑了速度约束方程,但并没有引入加速度约束方程,相对应引入了拉氏乘子的导数而使方程降阶,可以控制拉氏乘子的误差、速度误差,仿真结果很精确,Jacobian矩阵在步长很小时仍能保持稳定,增加了校正器在小步长时的稳定性和鲁棒性。可以给出速度、加速度较为精确解,可以监控所有状态变量如位移、速度、拉氏乘子,比SI2精度高,但对具有摩擦、接触的模型很敏感。

三种积分方式比较如下

4-1 三种积分方式的比较

 

Index 3

SI2

SI1

求解精度

位移精度高

位移,速度,加速度精度高

位移,速度,加速度,拉氏乘子精度高

求解稳定性

一般

求解速度

一般

一般

处理高频问题

中低频问题适合

高频适合

高频适合

 

4.5.3.22求解器的特点比较

 

11 Gstiff

Gstiff求解器为刚性稳定算法,采用多步、变阶(最高阶为6)、变步长、固定系数算法。可直接求解DAE方程,有I3SI2SI1三种积分格式。在预估中采用泰勒级数,而且其系数是假设步长不变而得到的固定系数,因而当步长改变时会产生误差。其奇特点是计算速度快,位移精度高,I3格式时速度、尤其加速度会产生误差,可以通过控制最大步长来控制求解中步长的变化,从而提高精度使仿真运行在定步长状态。当步长小时,Jacobian矩阵是步长倒数的函数会变成病态,SI2SI1积分格式时Jacobian矩阵可以步长很小时仍能保持稳定。该算法可以适应很多仿真分析问题。

22 Wstiff

Wstiff求解器为刚性稳定算法,采用多步、变阶(最高阶为6)、变步长、变系数算法。

可直接求解DAE方程,有I3SI2SI1三种积分格式。在预估中采用NDFNewton Divided Difference)公式用于预估,可以根据步长信息修改相应阶的系数,而且步长改变并不影响精度,因而更具健壮性,更稳定。但仿真时间比Gstiff长。

3 Dstiff

3Dstiff

Dstiff求解器为刚性稳定算法,采用多步、变阶(最高阶为6)、变步长、变系数(固定第一个系数)算法。可直接求解DAE方程,ADAMS中仅有I3一种积分格式。在预估中采用NDFNewton Divided Difference)公式用于预估,固定第一个系数,从而第一个系数与步长无关,其他变系数随步长变化而变化可以根据步长信息修改相应阶的系数,较稳定。但仿真时间比Gstiff长。基于DASSL积分器,由Petzold开发。

43 Constant_BDF

Constant_BDF求解器为刚性稳定算法,采用多步、变阶(最高阶为6)、固定步长算法。

可直接求解DAE方程,有I3SI2SI1三种积分格式。在预估中采用NDFNewton Divided Difference)公式用于预估,在SI2积分格式时小步长时非常稳定健壮,可以解Gstiff失败的问题,位移、速度求解精度高,而且对加速度和力的不连续性没有Gstiff求解器敏感,有些问题没有GstiffWstiff快,Hmax太大结果不准,Hmax太小速度太慢。

54 ABAM

ABAM求解器为非刚性稳定算法,采用多步、变阶算法(最高阶为12)、变步长算法。

适合求解低阻尼、瞬态系统,尤其适合求解非刚性系统但存在突变或高频的系统,ABAM利用坐标分块技术将DAE方程变为ODE方程,仅独立坐标被积分求解,其他非独立坐标利用约束方程(代数方程)求解。L.F.ShampineM.K.Gordon开发。

65 RKF45

RKF45非刚性稳定算法,采用单步算法,是以上多步算法的补充,但在积分计算时计算导数费时,而且与其他算法相比不能给出高精度结果,且速度比ABAM积分器慢。由L.FShampine H.A.Watts开发的DDERKF积分器。

 

4.5.4 刚性问题求解算法选择

数值刚性问题指系统的特征值分布广泛,存在低频、高频,而且对应的高频部分具有较高阻尼,因而系统当有可能高频振动时,由于高频阻尼使而使其很快好散掉。刚度比为系统隐藏的最高频率(对应较高阻尼)与系统表现出的最低频率(对应较低阻尼)的比值

一般刚度比为200时为称为刚性系统,刚度比为20以下时为非刚性系统。非刚性系统其最高频率一定对应较小阻尼而可以被激发出。如具有柔性体的系统,柔体的高频都具有高阻尼,一般不会被激发,都是低频被激发,而系统的高频被激发时系统就变为非刚性系统。刚性积分器可以对数值刚性系统的微分方程进行有效的积分,刚性积分器中积分器步长被限制为最高主动频率(系统表现出的最高频率)的倒数,而非刚性积分器中积分器步长被限制为最高频率(系统所有频率中的最高频率,包含隐藏频率)的倒数,这样非刚性积分器对数值刚性系统的微分方程积分的效率非常低。

ADAMS中如果一个系统是非数值刚性系统,可以采用ABAMRK45积分器,也可以采用GstiffWstiffDstiff Constant_BDF积分器,但如果系统是数值刚性系统,而采用了采用了ABAMRK45系统将不会收敛或计算速度奇慢。

2.5.2节中例子,当k110 N/mmk21000000 N/mmm1=1kgm2=1kg,计算可知系统的第一阶频率为11.25Hz,第二阶频率为7117.6Hz,为典型的物理刚性系统。而加入阻尼c10.1 N/mm/sc2100000N/mm/s后,系统变为典型的数值刚性系统。数值刚性系统除在刚度方面存在较大差异外,还有一个很重要的特征是对应高频的阻尼较大,使较高频率被基本阻尼掉,而低频则处于未阻尼状态。当数值刚性系统采用ADAMS非刚性数值算法如ABAMRKF45时会出现数值困难,很难收敛,而用刚性数值算法如GstiffWstiffDstiffConstant_BDF时可以很快收敛。而去掉阻尼后的物理刚性系统,高频没有被阻尼掉为系统为高频系统,采用非刚性数值算法如ABAMRKF45以及刚性数值算法如GstiffWstiffDstiffConstant_BDF都可以较快收敛。这个例子说明数值刚性系统必须采用专用于求解刚性问题的数值方法。

上一篇  下一篇  1  2  3  4  5  6  共7篇
关于CAENET | 广告服务 | 网站地图 | 联系方式
版权所有:中国CAE联盟 Copyright 2005-2012 All Rights Reserved
沪ICP备06014470号